
Lab 0 - Introduction to Hadoop/Eclipse/Map/Reduce 
CSE 490h - Winter 2007 
 
To Do 
1. Eclipse plug in introduction. 
2. Read this hand out. 
3. Get Eclipse set up on your machine. 
4. Write the word counter example in Eclipse 
5. Load a small text corpus onto the cluster. 
6. Run word counter on the corpus. 
7. Convince Slava you have it working. 
8. That’s all, folks. 
 
This Document 
 
1. Hadoop concepts 
2. The Word Counter Example 

a. Word Counter Map & Code 
b. Word Counter Reduce & Code 
c. Word Counter Main & Code 

3. Running a MapReduce on Hadoop 
a. Dfs 
b. Running a MapReduce locally 
c. Seeing job progress 
 

Hadoop Concepts 
To use Hadoop, you write two classes -- a Mapper and a Reducer. The Mapper class contains a 
map function, which is called once for each input and outputs any number of intermediate <key, 
value> pairs. What code you put in the map function depends on the problem you are trying to 
solve. Let's start with a short example. 
 
Suppose the goal is to create a word count of a body of text – we are given the text files, and we 
want to output a list of words annotated with their counts. For that problem, an appropriate Map 
strategy is: for each word in the input, output the pair <word, 1>. 
 
For example, suppose we have this five-line High school football coach quote as our input data 
set: 
 
We are not what 
we want to be, 
but at least 
we are not what 
we used to be. 
 
Running the Map code that for each word, outputs a pair <word, 1>, yielding the set of pairs... 
<we, 1> 
<are, 1> 
<not, 1> 
<what, 1> 
<we, 1> 
<want, 1> 
<to, 1> 
<be, 1> 
<but, 1> 
etc... 



For now we can think of the <key, value> pairs as a nice linear list, but in reality, the Hadoop 
process runs in parallel on many machines. Each process has a little part of the overall Map input 
(called a map shard), and maintains its own local cache of the Map output. (For a description of 
how it really works, see Hadoop/MapReduce or the Google White Paper linked to at the end of 
this document.) 
 
After the Map phase produces the intermediate <key, value> pairs they are efficiently and 
automatically grouped by key by the Hadoop system in preparation for the Reduce phase (this 
grouping is known as the Shuffle phase of a map-reduce). For the above example, that means all 
the "we" pairs are grouped together, all the "are" pairs are grouped together like this, showing 
each group as a line... 
 
<we, 1> <we, 1> <we, 1> <we, 1> 
<are, 1> <are, 1> 
<not, 1> <not, 1> 
<what, 1> <what, 1> 
<want, 1> 
<to, 1> <to, 1> 
<be, 1> <be 1> 
<but, 1> 
<at, 1> 
<least, 1> 
<used, 1> 
 
The Reducer class contains a reduce function, which is then called once for each key -- one 
reduce call for "we", one for "are", and so on. Each reduce looks at all the values for that key and 
outputs a "summary" value for that key in the final output. So in the above example, the reduce is 
called once for the "we" key, and passed the values the mapper output, 1, 1, 1, and 1 (Note that 
the values going into reduce are not in any particular order). Suppose reduce computes a 
summary value string made up of the number of values the mapper output for the given key, then 
the output of the Reduce phase on the above pairs will produce the pairs shown below. The 
Reduce phase also sorts the output <key,value> pairs into increasing order by key: 
 
<are, 2> 
<at, 1> 
<be, 2> 
<but, 1> 
<least, 1> 
<not, 2> 
<to, 2> 
<we, 4> 
<what, 2> 
<want, 1> 
<used, 1> 
 
Like Map, Reduce is also run in parallel on a group of machines. Each machine is assigned a 
subset of the keys to work on (known as a reduce shard), and outputs its results into a separate 
file. 
 
Word Count Example 
 
Let’s take the above map reduce algorithm and implement it on the hadoop framework. First, we 
are going to tackle the map portion: 
 
 
 



Word Count Map 
 
A Java Mapper class is defined in terms of its input and intermediate <key, value> pairs. To 
declare one, simply subclass from MapReduceBase and implement the Mapper interface. The 
Mapper interface provides a single method:  
 

public void map(WriteableComparable key, Writeable value,  
                                      OutputCollector output, Reporter reporter). 
 
Note: these inner classes probably need to be declared "static". If you get an error saying 
ClassName.<init>() is not defined, try declaring your class static. The map function takes four 
parameters which in this example correspond to: 
 

• WriteableComparable key - the byte-offset 
• Writeable value - the line from the file 
• OutputCollector - output - this has the .collect method to output a <key, value> pair 
• Reporter reporter - you can ignore this for now 
•  

The Hadoop system divides the (large) input data set into logical "records" and then calls map() 
once for each record. How much data constitutes a record depends on the input data type; For 
text files, a record is a single line of text. The main method is responsible for setting output key 
and value types. 
 
Since in this example we want to output <word, 1> pairs, the types will both be Text (a basic 
string wrapper, with UTF8 support). It is necessary to wrap the more basic types because all input 
and output types for Hadoop must implement WritableComparable, which handles the writing and 
reading from disk. 
 
For the word count problem, the map code takes in a line of text and for each word in the line 
outputs a string key/value pair <word, 1>. 
 
The Map code below accomplishes that by... 
 

• Parsing each word out of value. For the parsing, the code delegates to a utility 
StringTokenizer object that implements hasMoreTokens() and nextToken() to iterate 
through the tokens. 

• For each word, calling output.collect(word, value) to output a <key, value> pair for each 
word. 

 
public class wordCountMapper extends MapReduceBase implements Mapper { 
 Text word   = new Text(); 
 Text oneText  = new Text("1"); 
 public void map(WritableComparable key, Writable values, 

OutputCollector output, Reporter reporter)  
throws IOException { 

  String line = values.toString(); 
  StringTokenizer iter = new StringTokenizer(line); 
  while(iter.hasMoreTokens()) { 
   word.set(iter.nextToken()); 
   output.collect(word, oneText); 
  } 
 } 
 
} 
 
 



When run on many machines, each mapper gets part of the input -- so for example with 100 
Gigabytes of data on 200 mappers, each mapper would get roughly its own 500 Megabytes of 
data to go through. On a single mapper, map() is called going through the data in its natural 
order, from start to finish.  
 
The Map phase outputs <key, value> pairs, but what data makes up the key and value is totally 
up to the Mapper code. In this case, the Mapper uses each word as a key, so the reduction below 
ends up with pairs grouped by word.  
 
We could instead have chosen to use the line-length as the key, in which case the data in the 
reduce phase would have been grouped by line length. In fact, the map() code is not required to 
call output.collect() at all. It may have its own logic to prune out data simply by omitting collect. 
Pruning things in the Mapper is efficient, since it is highly parallel, and already has the data in 
memory. By shrinking its output, we shrink the expense of organizing and moving the data in 
preparation for the Reduce phase. 
 
Word Count Reduce 
Defining a Reducer is just as easy. Simply subclass MapReduceBase and implement the 
Reducer interface:  
 
public void reduce(WriteableComparable key, Iterator values,  
                             OutputCollector output, Reporter reporter).  
 
The reduce() method is called once for each key; the values parameter contains all of the values 
for that key. The Reduce code looks at all the values and then outputs a single "summary" value. 
Given all the values for the key, the Reduce code typically iterates over all the values and either 
concats the values together in some way to make a large summary object, or combines and 
reduces the values in some way to yield a short summary value. 
 
The reduce() method produces its final value in the same manner as map() did, by calling 
output.collect(key, summary). In this way, the Reduce specifies the final output value for the 
(possibly new) key. It is important to note that when running over text files, the input key is the 
byte-offset within the file. If the key is propogated to the output, even for an identity map/reduce, 
the file will be filed with the offset values. Not only does this use up a lot of space, but successive 
operations on this file will have to eliminate them. For text files, make sure you don't output 
the key unless you need it (be careful with the IdentityMapper and IdentityReducer). 
 
Word Count Reduce Code 
The word count Reducer takes in all the <word, 1> key/value pairs output by the Mapper for a 
single word. Given all those <key, value> pairs, the reduce outputs a single value string. For the 
word count problem, the strategy is simply to count all the values and set the summary to this 
number.  
 
To do this, the Reducer code simply iterates over values and counts them.  
 
public class wordCountReducer extends MapReduceBase implements Reducer 
{ 
 Text count = new Text(); 
 public void reduce(WritableComparable key, Iterator values, 

OutputCollector output, Reporter reporter)  
throws IOException { 

  int wordcount = 0; 
  while (values.hasNext()) { 
   values.next(); 
   wordcount++; 
  } 



  count.set(String.valueOf(wordcount)); 
  output.collect(key, (Writable)count); 
 } 
} 
 
 
Word Count Main Program 
Given the Mapper and Reducer code, the short main() below starts the Map-Reduction running. 
The Hadoop system picks up a bunch of values from the command line on its own, and then the 
main() also specifies a few key parameters of the problem in the JobConf object, such as what 
Map and Reduce classes to use and the format of the input and output files. Other parameters, 
ie. the number of machines to use, are optional and the system will determine good values for 
them if not specified. 
 
Note one set of parameters in particular, InputPath and OutputPath. The InputPath must be a 
valid directory on the DFS. The map reduce will then be run over all files in that directory. The 
OutputPath must be a new directory that does not yet exist. The execution of the job will create 
the directory. (If the directory already exists, hadoop will abort the job) 
 
public class wordCountDriver { 
 
 public static void main(String[] args) { 
  JobClient client = new JobClient(); 
  JobConf conf = new JobConf(wordCountDriver.class); 
 
  // specify output types 
  conf.setOutputKeyClass(Text.class); 
  conf.setOutputValueClass(Text.class); 
 
  // specify input and output DIRECTORIES (not files) 
  // on the DFS. 
  conf.setInputPath(new Path("src")); 
  conf.setOutputPath(new Path("out")); 
 
  conf.setMapperClass(wordCountMapper.class); 
  conf.setNumMapTasks(10); // Number of machines for map 
 
  conf.setReducerClass(wordCountReducer.class); 
  conf.setNumReduceTasks(2); // Num of machines for reduce 
 
  client.setConf(conf); 
  try { 
   JobClient.runJob(conf); 
  } catch (Exception e) { 
   e.printStackTrace(); 
  } 
 } 
}  
 
 
 
 
 
 
 
 



Running A Map-Reduction Manually 
 
To run a Hadoop job, simply ssh into any of the JobTracker nodes on the cluster. To run the job, 
it is first necessary to copy the input data files onto the distributed file system. If the data files are 
in the localInput/ directory, this is accomplished by executing: 
 
./bin/hadoop dfs -put localInput dfsInput 
 
The files will then be copied onto the dfs into the directory dfsInput. It is important to copy files 
into a well named directory that is unique. These files can be viewed with  
 
./bin/hadoop dfs -ls dir 
 
where dir is the name of the directory to be viewed.  
 
You can also use 
 
./bin/hadoop dfs -lsr dir 
 
to recursively view the directories. Note that all "relative" paths given will be put in the  
 
/users/$USER/[dir] 
 
directory. Make sure that the dfsOutput directory does not already exist, as you will be presented 
with an error, and your job will not run (This prevents the accidental overwriting of data, but can 
be overridden).  
 
Now that the data is available to all of the worker machines, the job can be executed from a local 
jar file: 
 
./bin/hadoop jar wordCount.jar 
 
The job should be run across the worker machines, copying input and intermediate data as 
needed. Assuming the output of the reduce stage will be left in the dfsOutput directory, copy 
these files to your local machine in the directory localOutput by: 
 
./bin/hadoop dfs -get dfsOutput localOutput 
 
Running A Map-Reduction Locally 
 
During testing, you may want to run your Map-Reduces locally so as not to adversely affect the 
compute clusters. 
 
This is easily accomplished by adding a line to the main method: 
conf.set("mapred.job.tracker", "local"); 
 
Seeing Job Progress 
When you submit your job to run a line will be printed saying: 
 
Running job: job_12345 
 
where 'job_12345' will correspond to whatever name your job has been given. Further status 
information will be printed in that terminal as the job progresses. However, it is also possible to 
monitor a job given its name from any node in the cluster. This is done by the command: 
 
./bin/hadoop/ job -status job_12345 



Jobs can also be killed if necessary with  
 
./bin/hadoop/ job -kill job_12345 
 
 A small amount of status information will be displayed, along with a link to a tracking URL (eg, 
http://jobtrackermachinename:50030/). This page will be a job-specific status page, and provide 
links to main status pages for other jobs and the Hadoop cluster itself. 
 


